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Summary. The complete error potential is used for the study of the correlation of 
molecules. The correlation can be seen as a relaxation of the electrons and 
a relaxation of the nuclei. From the Fermi sea, the electronic relaxation gives rise to 
a partial excitation of each orbital which collectively generates a linear, a surface or 
a volume pressure; the resulting forces acting on the nuclei are defined in a general 
theory of the intramolecular forces. H3, H~-, the diatoms and the hydrid of the first 
nine elements are taken as examples. 
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1 Introduction 

Correlation is a quantum-chemical problem sufficiently important to justify many 
approaches. Correlation and decorrelation operators [-1, 2] display the relations 
between two states: the non-relativistic model and the independent electron model. 
In this paper, the first model is assumed to be extremely close to the physical 
molecule. The second model (as well as correlation and decorrelation processes) is 
not observable but physically imaginable. The relaxation of the electrons and of the 
nuclei arises from the correlation and changes the second into the first. 

The modification of the values of the physical data arises from these relaxations. 
The electronic wave is perturbed and intramolecularforces act on the nuclei (Sect. 
2). The complete error potential [3] must be added to the exact Hamiltonian 
operator so that the approximate wave function is the exact solution of the 
Schr6dinger equation. 

The uncorrelated model is regarded as a strained state. The electronic relax- 
ation and correlation forces (the forces acting on the nuclei) are obtained by 
applying the opposite of the complete error potential to the uncorrelated wave 
function (Sect. 3). After recalling the expression of this potential, we consider 
the results obtained for the molecular ion H + and for several diatomic molecules 
(Sect. 4). 
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The physical meaning of correlation forces brings out different causes related 
to the nature of the chemical bond. So, from this work, we can expect: a more 
understandable molecular model, the forecast of correlation effect, and the charac- 
terization of the chemical bond according to correlation effects. 

2 Intramolecularforces 

A structure is understandable only when one can describe the forces which allow it 
to exist and to remain. Although molecular mechanics is the usual method of 
structural chemistry, quantum-chemical studies of the intramolecular forces are 
rarely performed [4-6]. 

We have contributed to an approach to the intraatomic forces [7], to the 
electrostatic intramolecular forces [8, 9] and, since 1983, to the correlation forces 
[10-14]. 

2.1 Definition of the intramolecular forces 

The molecular energy, E, is related to the nuclear configuration (y). This energy can 
be presented, versus a set of independent variables, by an hypersurface. For a given 
direction, u, the force Fj acting on the nucleus j, has a component equal to 

8E 
F~")- 8Rs(, ) • 

R~ ") is the displacement of the nucleus j in the direction u. At the molecular 
equilibrium, 

Fj = 0 for all j. 

The energy will be usually written as the sum of several contributions: 

E(y) = ~ Ei(y). 
i 

Consequently, the force F s can be written: 

(1) 

8El 
Fj = Ei Fj'i with F(~! = ~R~, ). (2) 

The molecular equilibrium can be represented in as many ways as there exists 
different energy partitions. Some of them are well known: the classification of the 
forces working on the lengths of the bonds (stretching), on the valence angles 
(bending), on the twisting angles, the interactions between unbonded atoms in 
molecular mechanics and the sharing between SCF model, correlation and rela- 
tivity in quantum chemistry; these two partitions can be simultaneous. 

2.2 The complete error potential 

The energy partitions can often be described as successive approximations [15-17]; 
so we have considered them in terms of error and correction. The complete error 
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potential [3] being restricted to the Schr6dinger mechanics, a partition of the exact 
energy, Eox, should be first taken into consideration: 

Eox = Enr + Erel 

En~ is the non-relativistic energy. The subscript nr (non-relativistic) is always 
omitted below. Using Eq. (2) and Ere~, we obtain the intramolecular forces arising 
from the relativistic effects. 

Reference [3] gives the non-relativistic definition and theory of the complete 
error potential. The equations numbered (i) in [3] will be numbered (34) in this 
paper. For the nth state of a molecule, the complete error potential is written as 

P, = P~"(y) + p~', 

with p~u(y) = E,(y) - (E . (y ) )  (3-13) 

p~l= (E . (y ) )  - En(y ) + (AE~,~r(y)) - AE~,rr(y) + Vn(X, y) -- (V~(x, y)). (3-19) 

The bracket (V.(x, y)) has a zero value, x and y are the electronic and nuclear 
coordinates, V.(x, y) is the potential added to the exact Hamiltonian H(x, y), which 
takes into account the approximations 

H"PP(x, y) = / t ( x ,  y) + V.(x, y) = 1"(y) + / le (x ,  y) + V.(x, y). 

T(y) is the nuclear kinetic operator and I~o(x, y) is the electronic Hamiltonian. 
AE~,~(y) is defined by the relation 

AE~,r~(y) = EaPp(y) - E,,(y) (4) 

and is equal to the difference between the eigenvalues of approximate Hamiltonian 
operator H app (x, y) and the eigenvalues of the exact Hamiltonian operator I t(x,  y). 

Finally, we obtain 

P n  = ( A E ~ r r ( y ) )  - -  dEerr(y) -F gn(x, y) (3-20) 

or 

P, = I,(y) + V,(x, y). (3-21) 

2.3 The intramolecular corrective forces 

The term I ,(y) can be considered as a potential in the space of the nuclear 
configurations. Following Eq. (6-22), we deduce the expression of the intramolec- 
ular forces arising from the error 

F}U) .... = aI,(y) OAEerr(y) (3-22) 

The correction being the opposite of the error, the corrective forces which are to 
be applied to the approximate model are 

F(.,) ..... OI.(y) OAE .... (y) 
j = 0R}, ~ = OR}, ) (S) 

Equation (4) gives the same result as the a priori partition of Eq. (1). Owing to 
this method, the energy partition and the associated electronic correction potential 
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can be deduced simultaneously. It will be noticed that the term E should be written 
E .... in [11-14] and E err in [3]. In this paper, the superior index "corr" or "err" are 
used only if confusion may occur. The position of the p nuclei is defined by a set of 
3p - q independent parameters, q parameters determining the location of the 
molecule (q <~ 6). Thus, the interest of the internal coordinates, worked out by the 
molecular mechanics, is easily understandable. The internuclear distances are 
overabundant (p(p - 1)/2) as soon as p > 4. Moreover, the chemists prefer to use 
angular coordinates, stretching and bending potential rather than the internuclear 
potentials alone. Under the action of the potential, of the correctives forces 
( -AE~'~(y)  + C), the molecular configuration moves from the configuration asso- 
ciated to the approximate wave function &PP(x, y) to the eigenfunction of the exact 
Hamiltonian. These forces will have a physical sense only if the error has a physical 
sense. Neglecting the correlation will be corrected for by studying the correlation 
forces as exemplified in the following chapters. 

3 Applications of the error theory to the correlation 

When the independent electron model is well defined for a molecular state, the 
"correlation decrease" is defined for a given molecular geometry (y) and electronic 
state, by 

AE . . . .  (y) = - AEerr(y) = E"'(y) - ESCF(y). (6) 

For the molecular geometry (y), the energies E"'(y) and ESCV(y) are respectively 
equal to the energies calculated in the non-relativistic and self-consistent field 
approximations. 

This correlation decrease is considered as the standard definition of "correla- 
tion energy". Correlation forces are defined by derivation as stated in Eq. (4). 

3.1 Intramolecular correlation forces  

If E .... is expressed in terms of the internal coordinates Qk (k = 1 . . . . .  3p - q), 
a new set of forces Uk (k = 1 . . . . .  3p - q) can be derived. Near the equilibrium 
position, the elementary work is equal to 

3p-q 
d T =  ~ Uk dQk, (7) 

k = l  

with 

OAE . . . .  

U k - - - -  

For a diatomic molecule, the internal coordinate is the internuclear distance R, 
we obtain 

ddE  .... 
F = (8) 

dR 

F > 0 is a contraction force and F < 0 is an expansion force, The strength of the 
correlation force can be calculated from the "deformation energy arising from the 
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Fig .  1. W o r k  o f  the  c o r r e l a t i o n  forces;  

R i n t e r n u c l e a r  d i s t ances  axis;  E energ ies  axis;  

Rscv se l f - cons i s t en t  f ie ld  e q u i l i b r i u m  d i s tance ;  

R . r  n o n - r e l a t i v i s t i c  e q u i l i b r i u m  d i s tance ;  ARoor 
c o r r e l a t i o n  d e f o r m a t i o n ;  Eoo~ c o r r e l a t i o n  energy;  

AEscF c o r r e l a t i o n  decrease;  fiE: w o r k  o f  the  

c o r r e l a t i o n  forces  

T a b l e  1 

M o l e c u l e s  Rsc  F Rnr Eeor 6E Eo Feq 3E/Eo 
(%) 

N H . . .  1.7 1.9614 - 0 .2317 - 0 .0162 - 0.0457 - 0.06 35 

N z . . .  1.996 2.098 - 0.535 - 0.0178 - 0.165 - 0.15 11 

F 2 . . .  2.491 2.637 - 0 .7297 - 0 .0064 - 0.059 - 0 .074 10.8 

B e O . . .  2.4 2.5 - 0.14 - 0.002 - 0.028 - 0.016 7 

C 2 . . .  2.3 2.35 - 0 .5115 - 0.00001 - 0 .1755 - 0 .0045 5.7 

H 2 . . .  1.3875 1.4009 - 0.041 - 0 .00005 - 0.001 - 0.005 5 

B 2 . . .  3.1 3.003 - 0.3231 - 0 .0015 - 0.0431 + 0 .024 3.5 

F H . . .  1.693 1.737 - 0 .3776 - 0.0013 - 0.041 - 0.029 3 

0 2 . . .  2.28 2.30 - 0 .6470 - 0 .0017 - 0.087 - 0.084 2 

O H . . .  1.8 1.834 - 0.31 - 0.001 - 0.05 - 0.04 2 

L i 2 . . .  5.2 5.1 - 0 .1248 - 0 .0002 - 0.0308 + 0.002 0.7 

C H . . .  2.086 2.124 - 0 .1967 - 0.0017 - 0 .0287 - 0.008 0.6 

H e  + + . . .  1.26 1.32 - 0.043 - 0 .0005 - 0.001 - 0.008 0.5 

B e l l . . .  2.538 2.54 - 0.1051 - 0 .000004 - 0.011 - 0.002 0.04 

B H . . .  2.336 2.34 - 0 .1522 - 0 .0000018 - 0 .0122 - 0 .0052 0.02 

L i H . . .  3.015 3 - 0 .0826 - 0 .0000002 - 0 .0406 + 0.0015 0.0005 

correlation" 

6 E  = F d r  = E ' ( R . r )  - E " ' ( R s c F )  (9) 
scF 

or in a more general way, 
f ynr 

6 E  = T d y  = E " ' ( y . , )  - E " ' ( Y s c F ) .  (10) 
d Yscv 

Figure 1 is an illustration of Eq. (9). From Eqs. (9) or (10) we obtain the strength 
of the correlation force, at equilibrium 

fiE fE 
. . . .  ~ ,  ( 1 1 )  F~ r r - -  or Uk, e q -  

AR AQk' 
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Fig. 2. Intramolecular vaporization 

with 
A R  = R,r - RSCF or AQk = Q~r - QSCF. 

If the coordinate Qk is the volume of the molecular polyhedron, U .... is identical 
to a correlation pressure arising from the relaxation of the electronic cloud. 

For a linear or planar molecule, a surface pressure or an expansion force can 
also be defined. 

Numerical data related to the correlation in diatomic molecules are reported in 
Table I, using energy values given in literature, issued from ab initio methods. 
Molecular dilation often occurs especially for true molecules and for molecular 
fragments. The values of the deformation energy arising from the correlation are 
not always negligible parts of correlation energy. 

3.2 The correlation o f  a molecule compared to the liquid-vapour equilibrium 

The changes in the molecular geometry and the building up of new orbitals, weakly 
occupied, by the excitation of the SCF orbitals (as it concerns a partial occupation 
number) are two inseparable aspects of the correlation. These are illustrated in 
Fig. 2 where the orbitals are represented by their energy levels and their occupation 
numbers in the SCF and non-relativistic models [19]. The nearly full levels and the 
nearly empty levels, respectively, can be compared to a condensed state and 
a vapour in equilibrium, taking into consideration the well-known model of Eyring 
[20]. In Eyring's model vapour mirrors the fluid vacancies. In the correlation it can 
happen that partially occupied excited orbitals mirror the partially empty SCF 
orbitals. 

For these reasons, in previous publications [3, 10-13] and communications, 
this change in the distribution of the electrons on energy levels was called "intra- 
molecular vaporization". But the analogy is not complete and therefore it will be 
better to speak about an intramolecular "pseudovaporization". Energy levels and 
occupation numbers can be calculated, if not many, by Schr6dinger mechanics, if 
many by Dirac's statistics. 

The statistical equilibrium suggests the use of thermodynamic parameters 
playing the role, at the molecular scale, of "macroscopic variable" like pressure, 
entropy, etc. in a fluid. These homonymous of macroscopic variables could de- 
scribe the global effect of the correlation. 
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Fig. 3. Isocorrelation lines for the linear 
H~- configurations; X length of the shorter bond; 
Y internuclear separation: The correlation energy is 
expressed in millihartree 

4 Study of correlation and correlation force in the molecular ion H3 + 
and some diatomic molecules 

The use of the second quantization method allows the direct calculation of the 
correlation decrease; it has been calculated for the linear and isoscele triangular 
configurations as explained in [11]. 

4.1 Linear configuration 

The isocorrelation lines are drawn on Fig. 3. The set of the symmetrical configura- 
tions is represented by the straight line D1 defined by its equation: Y = 2X. Along 
this line, the derivative is negative, consequently the correlation force is an expan- 
sion force and the molecular symmetry is preserved. Near the equilibrium, F has 
a value equal to - 1.1 x 10 -2 a.u. (1 a.u. = 8.2 x 10 -s N). For the asymmetrical 
configurations the gradient vector has always a negative component, the other 
being almost zero. So above the D1 line, the gradient vector is parallel to the X axis 
and under the D1 line, it is parallel to the Y axis. This means that under the action 
of the correlation force an asymmetrical configuration will change to a symmet- 
rical one. 

4.2 Isosceles configuration 

Figure 4 shows the isocorrelation lines for the isoscele triangular configurations of 
H +'. D and X are respectively the height and the base of the isoscele triangle. The 
correlation force is easily obtained in three areas: 
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X(u,ca . )  

4 " \ 

Fig. 4. Isocorrelation lines for the triangular H~- configurations; X base of the isosceles triangle; 
D height of the isosceles triangle. The correlation energy is expressed in millihartree 

The straight line T, defined by its equation (X = 2D/x/~ ) represents the set of 
equilateral triangles. Along this direction, the derivative is negative; consequently 
the correlation force is an expansive force and the molecular symmetry is pre- 
served. At the equilibrium position, located at the J point (x -~ 1.88 a.u.), the 

• ¢ o r r  correlauon force, f e q  = - 0.9 a.u. and the surface pressure, A - - 0.5 a.u. (1 a.u. 
for the pressure equal to 2.9 x 1013 J/m2). 

The set of the linear, symmetrical configurations, studied in Sect. 4.1, is repres- 
ented by the X axis. The shape of the isocorrelation lines, near the X axis, implies 
the instability of the linear configuration. 

When D > 4 a.u., the gradient vector is almost parallel to the X axis and the 
X component has a negative value. The correlation force is an expansive one, the 
value of the X component increases and the D component value remains constant. 
The geometry of H + draws near the equilateral configuration. Since the isocorrela- 
tion lines are quasi equidistant, the X component is stationary and its value is 
equal to - 0.02 a.u. 

4.3 Checking the intramolecular pseudovaporization 

Figures 5 and 6 illustrate the results related to the alteration of the geometry due to 
the correlation force. In brief, the symmetrization principle and the expansion 
principle applied to the most symmetrical configuration are confirmed in the case of 
H~. These two principles are deduced from the internal molecular pseudovapor- 
ization and lead to the equilibrium of the components and to the expansion of the set. 

4.4 Correlation force in two subsets of diatomic molecules 

Figure 7 shows the variations of the correlation force at equilibrium for a set of 
homonuclear diatomic molecules and for the associated hydrides versus the atomic 
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Fig. 5. Correlation forces for the linear H~- configurations. F1 symmetrization force; F2 expansion force. 
L = Y / 2  - X (see caption of Fig. 3) 

number of the element. The two lines are similar but the value of F, for an hydride, 
lies between the value related to H2 and the value related to the homonuclear 
diatomic molecule. Most of these forces are expansion forces; N2 provides the 
highest value among the expansion force (0.15 a.u.) when the highest value for the 
contraction force is obtained for Bz (0.03 a.u.). (Twenty years ago, Smeyers ([21] 
had observed on an experimental basis that the contraction forces are less frequent 
and weaker than the dilatation one as in this sample). We suggest [12] that the 
dilatation appears in true molecules or in the molecular fragments, when the 
contraction forces appear in aggregates or in Van der Waals molecules. So, in the 
hightly bonded molecules, the correlation pressure due to the intramolecular 
pseudovaporization, would be a restraining effect for the bonding orbital formation. 

4.5 Partitioning correlation force 

Should the correlation force be a criterion for distinguishing between the chemical 
bonding and the nonbonding (or supermolecular bond).? 

I F~O 

D> 3,5u.a. 

F'~ 0,3 u.o.  

• 
F.,, 0,1 u.~. 

I '~E 0,I u.a. 
. D<<X  

Fig. 6. Correlation forces for the triangular H~ 
configurations 
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Fig. 7. Correlation forces at equilibrium (Feq) for the 
homonuclear diatomic molecules and the associated hydride 
versus the Z atomic number (1 a.u, = 8.2 x 10 -s N). 
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Fig. 8. Energies of several diatomic molecule models. R internuclear distances; E energies; 
Esc F uncorrelated molecular energy; EXcF, E~CF uncorrelated energy of the X, Y atom; A upper limit of 
the validity for the SCF model; EMCSCF1 energy of the simplest multiconfigurational model; ENCSCFV opti- 
mized energy of the valence configuration; E2 lower energy without atomic correlation; 
Enr non-relativistic energy; EX., Err non-relativistic energy of the X, Y atom; AEI energy decrease due to 
the fundamental expansion; A En energy decrease due to the fundamental attraction; A En, 1 interaction 
energy decrease between uncorrelated atoms; AEn,2 energy decrease due to the atomic correlation; 
AE., 1. v decrease of the internal correlation energy between uncorrelated atoms; dEn. 1,.. decrease of the 
external correlation energy between uncorrelated atoms 

The  discussion seems to be easier  if the dis t inct  causes [22-30]  con t r ibu t ing  to  
the cor re la t ion  force are s tudied separately,  as expla ined in [14]. This analysis  leads 
to a pa r t i t ion  of the cor re la t ion  energy which is summar ized  in Fig. 8 (the Ai are 
negative). The molecule  is by  convenience supposed  to be d ia tomic .  

Resul t ing f rom this energy par t i t ion ,  cor re la t ion  force is pa r t i t ioned  fol lowing 
the set of the AEi. The two above  repor ted  principles  derive only of the 
AE~ = EMCSC F --  Esc F by  min imiza t ion  term. 
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Fig. 9. Correlation forces in Liz. 
Fxr interatomic force; Req internuclear 
equilibrium distance; F~ fundamental 
repulsion force; Eli fundamental attraction 
force; F = F1 + F2: F is the correlation force; 
Fn, 1 attraction force between uncorrelated 
atoms; Fn, z atomic correlation force; 
Fxi, 1,v internal attraction force between 
uncorrelated atoms; FH, 1,,,~ external force 
between uncorrelated atoms 

For a diatomic molecule, a force 

0Ai 
F i  ~ -  - -  

OR 

derives from each term. Figure 9 gives the different forces Fi, named and discussed 
in Ref. [5] and here, calculated from the literature 1-31, 32] for the diatom Li2. 

The intermolecular force Fxy versus the internuclear separation R determines 
the equilibrium, close to R = 5 a.u. The limit of stability of the SCF model (defined 
on Fig. 8) is RA = 6.37 a.u. In the considered interval 

(3.9 a.u. < R < 6.1 a.u.) 

the different contributions are contraction forces (positive sign) except the so called 
"fundamental repulsive force" F! (corresponding to the antibonding orbitals). One 
observes that F~ is not the leading part in total correlation force F, in agreement 
with that Liz is not a true chemical molecule. 

The Fix = F -  F~ "attractive interatomic force" is equivalent to Fxy for 
R > 15 a.u. In FII the so called "intraatomic correlation force" Fn2 is negligible with 
respect to "interatomic correlation force" FIH. In F~I1 the part of nonvalence 
orbitals Fixl,v is negligible with respect to the part of valence orbitals. Fiilv. Finally 
the so called external correlation, identical to Fiia,v has a restricted part in the total 
correlation F. 

5 Conclusion 

The use of the complete error potential allows the study of intramolecular forces. 
At equilibrium, the intramolecular forces are defined from a partition of the energy; 
these forces have a physical meaning only if the energy partition has a physical 
meaning. So, the correlation looks like a process which is defined first and foremost 
mathematically but it is also physically imaginable. The correlation process breaks 
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a molecular state (defined by the SCF model) arising from a strain described by the 
complete error potential. The electronic and nuclear terms of this potential include 
the relaxation of the nuclear configuration. 

The electronic relaxation may be associated with an intramolecular change 
which creates holes in the SCF orbitals and consequently creates some weakly 
occupied orbitals. 

The nuclear relaxation results from the work of the correlation forces. A cor- 
relation pressure may be calculated; according to the molecular geometry this 
pressure can be a linear, surface, or volume pressure. For the tightly bonded 
molecules, the pressure defines the dilatation and symmetrization forces; so these 
forces act with a moderating effect. The values of the energy and forces depend 
strongly on the nature of the molecule. At equilibrium, the order of magnitude is 
usually less than 15 x 10-2 a.u. for the dilation force and less than 3 x 10-2 for the 
contraction force. 

Finally, it appears that the correlation in the isosteric series follows the periodic 
table of the elements in agreement with the correlation pressure of the electronic 
cloud. 

The result of the correlation process may be expressed in terms of energy as 
usual or in terms of forces; although both description are not equivalent. A zero 
force may correspond to a large energy. For instance for two nonbonded atoms it is 
a vanishing correlation force but the correlation energy is the sum of the correla- 
tion energy of the two atoms. 

The correlation could offer a good criterion to classify the chemical bond: the 
attractive correlation force characterizes the clusters, the repulsive characterizes 
the real molecule, and the zerovalue the Van der Waals molecule. 

One useful aspect of this approach is a derivation of possible empirical rules 
that could qualitatively provide an estimate of correlation effects in various 
systems. 

On the other hand, we suggest the use of quantities similar to the thermodyn- 
amical ones but to the scale of molecular structure. Their mutual relations should 
be compared with those of the fluids. 
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